Exp. 6: Titration Curve

1. Phosphoric acid, H_3PO_4, is a tripptic acid. Write the chemical dissociation reaction for each dissociation of H_3PO_4 in water. Additionally, write an expression for each of the equilibrium constants of the dissociation.

2. Describe two (2) ways in which an equivalence point of an acid/base titration can be detected.

3. Given the following data about a titration between an unknown weak acid and KOH:
 - $K_a = 4.5 \times 10^{-4}$
 - 7.00 ml of 0.100 M KOH are used
 - 20.0 ml of 0.100 M weak acid are used
 - Resulting solution is diluted to a total volume of 100.00 ml
 With this information, find the pH.

4. True/False For a titration of a polyprotic acid with a solution of NaOH:
 a. At the first equivalence point, the pH of the solution is equal to 7 (seven).
 b. K_{a1} will be less than K_{a2}.
 c. A diprotic acid will have 2 equivalence points.

5. The K_a for some unknown weak acid is 4.9×10^{-5}. What is the pH halfway to the equivalence point?

6. You are given 20.00 ml of an unknown acid with a concentration of 0.100 M. Because you are very intelligent, you decide to titrate this acid with a known amount of NaOH. You add 6.00 ml of a 0.100 M NaOH solution and deionized water until the total volume equals 100 ml. By using a pH meter, you find that the pH of your solution is 2.65. What is the K_a of this unknown weak acid?