YOU MUST SHOW YOUR COMPLETE WORKING ON EACH OF PROBLEMS 5-7 TO RECEIVE FULL CREDIT.
STATE AND JUSTIFY ANY APPROXIMATIONS YOU MAKE.

Relevant Data:

Definitions:

\[\text{pH} = - \log_{10} [H_3O^+] \]

\[\text{pOH} = - \log_{10} [OH^-] \]

\[\text{pK}_a = - \log_{10} K_a \]

\[\text{pK}_b = - \log_{10} K_b \]

Autoionization of water:

\[K_w = [H_3O^+] [OH^-] = 1.0 \times 10^{-14} \ @ 25 \degree C \]

Therefore \(\text{pK}_a + \text{pK}_b = 14.00 \ @ 25 \degree C \)

The Henderson-Hasselbalch Equation:

\[pH = pK_a + \log_{10} \left(\frac{[A^-]}{[HA]} \right) \]

Solution of the quadratic equation \(ax^2 + bx + c = 0 \) is given by:

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
Multiple Choice and short answer problems (you do not need to show working for problems 1 - 4):

Question 1 Which of the following compounds has the lowest solubility in mol L\(^{-1}\) in water at 25\(^\circ\)C?

(a) Ag\(_3\)PO\(_4\) \(K_{sp} = 1.8 \times 10^{-18}\)
(b) Sn(OH)\(_2\) \(K_{sp} = 3 \times 10^{-27}\)
(c) CdS \(K_{sp} = 1.0 \times 10^{-28}\)
(d) CaSO\(_4\) \(K_{sp} = 6.1 \times 10^{-5}\)
(e) Al(OH)\(_3\) \(K_{sp} = 2 \times 10^{-32}\)

(5 points)

Question 2 If the following salts are dissolved in water, will the solution be acidic, basic or neutral? Check the appropriate box for each salt.

<table>
<thead>
<tr>
<th></th>
<th>Acidic</th>
<th>Basic</th>
<th>Neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>KF</td>
<td></td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>Na(_2)CO(_3)</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>CsNO(_3)</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>FeCl(_3)</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH(_4)Br</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(5 points)
Question 3) Silver chloride, AgCl \((s)\), is more soluble in:

(a) Pure water
(b) Aqueous NH\(_3\) solution
(c) Sea water
(d) Has the same solubility in each of the above solutions

(5 points)

Question 4) Considering the molecular structure of the following acids and bases, assign the relative acid and base strengths:

(a) 1 is a stronger base than 2, and 3 is a stronger acid than 4
(b) 1 is a stronger base than 2, and 4 is a stronger acid than 3
(c) 2 is a stronger base than 1, and 4 is a stronger acid than 3
(d) 2 is a stronger base than 1, and 3 is a stronger acid than 4

(5 points)
Long Answers. You must show all your working.

Question 5) Codeine is a derivative of morphine that is used as an analgesic. Codeine is a weak base as follows:

\[
C_{18}H_{21}O_3N(aq) + H_2O(l) \leftrightarrow C_{18}H_{21}O_3NH^+(aq) + OH^-(aq)
\]

pK_b for codeine is 6.05. Calculate the pH of a 10.0 mL solution of codeine containing 5.0 mg codeine. (Use molecular weights in periodic table; pK_b = -\log_{10} K_b)

\[
\frac{5.0 \times 10^{-3} \text{ g}}{(12 \times 18 + 21 \times 1.008 + 3 \times 16 + 14.01) \text{ g/mol}} = \text{# mol codeine} = \frac{5.0 \times 10^{-3} \text{ g}}{293 \text{ g/mol}} = 1.7 \times 10^{-5} \text{ mol}
\]

Initial concentration of codeine = \(\frac{1.7 \times 10^{-5}}{10 \times 10^{-3}} = 1.7 \times 10^{-3} \text{ mol/L}\)

<table>
<thead>
<tr>
<th></th>
<th>Codeine + H_2O \rightleftharpoons Codeine-H^+ + OH^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1.7 \times 10^{-3}</td>
</tr>
<tr>
<td>Change</td>
<td>-x</td>
</tr>
</tbody>
</table>
| Equilibrium | (1.7 \times 10^{-3} - x)

K_b = 10^{-6.05} = \frac{8.9 \times 10^{-7}}{1.7 - x} = \frac{x^2}{(1.7 - x)}

\[x^2 = (8.9 \times 10^{-7})(1.7 \times 10^{-3}) = 1.5 \times 10^{-3}\]

Assuming \(x \ll 1.7 \times 10^{-3}\)

\[x = 3.9 \times 10^{-5}\]

\[\text{[OH}^-\text{]} = 3.9 \times 10^{-5}\]

pOH = -\log_{10} (3.9 \times 10^{-5}) = 4.41

\[\text{pH} = 14.00 - 4.41 = 9.59\]

(20 points)
Question 6) (30 points)

You own an Olympic size swimming pool (volume 3.7×10^6 liters) at your Bel-Air mansion. To be safe for swimmers, not only does pool water need to be chlorinated but the pH of the water needs to be closely regulated; the pH needs to remain at 7.45. One chemical that is used to "chlorinate" swimming pools is a buffer of sodium hypochlorite (NaOCl) and hypochlorous acid (HOCl). K_a of HOCl is 3.5×10^{-8}

(a) What does the ratio of $[\text{OCI}^-]$ to $[\text{HOCl}]$ need to be to maintain the desired pH? Why?

\[
\text{pK}_a \text{ of HOCl} = -\log_{10} (3.5 \times 10^{-8}) = 7.46
\]

Using the Henderson-Hasselbalch equation for a buffer:

\[
\text{pH} = \text{pK}_a + \log_{10} \left(\frac{[\text{OH}^-]}{[\text{HOCl}]} \right)
\]

If pH desired = 7.45 = pK$_a$\n
\[
\text{pH} = \text{pK}_a + \log_{10} \left(\frac{[\text{OH}^-]}{[\text{HOCl}]} \right) = 7.45 \Rightarrow \frac{[\text{OH}^-]}{[\text{HOCl}]} = 1
\]

(b) After filling the pool from fresh tap water at the beginning of the summer, you start adding the chemicals necessary to make up the buffer. First, you add a total of 55 kg of NaOCl (molecular weight 74.5 g/mol) solid to the pool. Calculate the initial $[\text{OCI}^-]$ in the pool.

\[
\text{# mol of NaOCl} = \frac{55 \times 10^3 \text{ g}}{74.5 \text{ g/mol}} = 738 \text{ mol}
\]

\[
\text{volume} = 3.7 \times 10^6 \text{ L}
\]

\[
\Rightarrow [\text{OCI}^-] = \frac{738 \text{ mol}}{3.7 \times 10^6 \text{ L}} = 2.0 \times 10^{-4} \text{ mol L}^{-1}
\]
(c) OCl\(^-\) is of course a base. What is the pH of the pool water at this stage?

<table>
<thead>
<tr>
<th></th>
<th>OC(_1^-) + H(_2)O</th>
<th>⇌</th>
<th>HOC(_1) + OH(^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2 \times 10^{-4}</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>-x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>(\bar{E})</td>
<td>(2 \times 10^{-4} - x)</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

\[
\frac{x^2}{2 \times 10^{-4} - x} = K_b = \frac{K_w}{K_a} = \frac{1 \times 10^{-14}}{3.5 \times 10^{-8}} = 2.9 \times 10^{-7}
\]

Assume \(x \ll 2 \times 10^{-4}\)

\[
x^2 = (2.0 \times 10^{-4})(2.9 \times 10^{-7}) = 5.8 \times 10^{-11}
\]

\[
x = 7.6 \times 10^{-6}
\]

\[
\Rightarrow [OH^-] = 7.6 \times 10^{-6} \text{ mol L}^{-1}
\]

\[
\Rightarrow pOH = 5.12
\]

\[
\Rightarrow pH = 14.00 - 5.12 = 8.88
\]
(d) In your pool supply store you find another product called "Negative pH balancer". The label on the plastic container say "Contents: Muriatic Acid (HCl) 1 molar solution". What volume of the muriatic acid pool additive do you need to add to achieve the desired buffer at pH 7.45?

Have 7.38 mol of OCl⁻ in pool and need to achieve [OCl⁻] = [HOCl] to get to correct pH. Thus I need to add 369 mol of H⁺ to achieve following reaction:

$$\text{OCl}^- + \text{H}^+ \rightarrow \text{HOCl}$$

<table>
<thead>
<tr>
<th>Initial</th>
<th>7.38</th>
<th>369</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final</td>
<td>369</td>
<td>0</td>
</tr>
</tbody>
</table>

So to add 369 mol of H⁺ to pool I need 369 liters of 1.0 M H⁺ solution (added volume is negligible compare to pool volume)

[This is almost 100 gallons of H⁺!]
Question 7 (30 points)

A 40.0 mL sample of 0.15 M \(\text{Ba(OH)}_2 \) (a strong base) is titrated with 0.400 M \(\text{HNO}_3 \). Calculate the pH after addition of the following volumes of acid:

(a) 0.0 mL acid added

\[
0.15 \text{ M } \text{Ba(OH)}_2 \text{ has } 0.30 \text{ M } \text{OH}^- \\
\text{Ba(OH)}_2(\text{s}) \rightarrow \text{Ba}^{2+}(\text{aq}) + 2\text{OH}^-(\text{aq})
\]

\[
\text{pOH} = -\log(0.3) = 0.52 \\
\text{pH} = 13.48
\]

(b) 20.0 mL added

\[
\text{HNO}_3 \text{ strong acid } \rightarrow \text{H}_3\text{O}^+ + \text{NO}_3^-
\]

\[
20.0 \text{ mL } \times 0.400 \text{ mol/L} = 8 \text{ mmol } \text{H}_3\text{O}^+ \text{ added}
\]

\[
\text{mol of } \text{OH}^- \text{ originally } = 40.0 \text{ mL } \times 0.30 \text{ mol/L} \\
= 12 \text{ mmol}
\]

\[
\text{H}_3\text{O}^+ + \text{OH}^- \rightarrow 2\text{H}_2\text{O}
\]

Insert 8

Find 4

Now have \[4 \text{ mmol of OH}^- \text{ in } 60 \text{ mL of solution } \]

\[
\text{So } [\text{OH}^-] = \frac{4 \text{ mmol}}{60 \text{ mL}} = 0.067 \text{ M}
\]

\[
\text{pOH} = 1.18 \\
\text{pH} = 12.82
\]
(c) 30.0 mL added

\[\text{As per (b)} \quad 30 \times 0.4 = 12 \text{ mmol } H_3O^+ \text{ added} \]

\[H_3O^+ + OH^- \rightarrow 2H_2O \]

<table>
<thead>
<tr>
<th>Initial</th>
<th>12</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>After</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Exactly removed all OH\(^-\). Major species Ba\(^{2+}\), NO\(_3^-\)

\[pH = 7.00 \]

\(\text{EQUVALENCE POINT} \)

(d) 40.0 mL added

\[\text{Total of} \quad 40 \times 0.4 = 16 \text{ mmol } H_3O^+ \text{ added} \]

\[H_3O^+ + OH^- \rightarrow 2H_2O \]

<table>
<thead>
<tr>
<th>Initial</th>
<th>16</th>
<th>12</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[[H_3O^+] = \frac{4 \text{ mmol}}{80 \text{ mL}} = 0.05 \text{ mol L}^{-1} \]

\[pH = 1.30 \]
(e) Plot a graph of pH versus mL of HNO₃ added using the points you have calculated. Sketch a line going through these points based on your knowledge of the shapes of titration curves. Mark on your graph the equivalence point.