WEB QUIZ #3: ACIDS AND BASES

I. At 0°C, the value of K_w is 1.14×10^{-15}.

 Question no. 1: Calculate the $[H^+]$ in mol/L in pure water at 0°C.

 Answer #1: 3.38×10^{-8}

 Question no. 2: What is the pH of pure water at 0°C?

 Answer #2: 7.47

II. For a solution with pH = 8.66.

 Question #3: Calculate $[H^+]$ in mol/L

 Answer #3: 2.2×10^{-9}

 Question #4: Calculate $[OH^-]$ in mol/L

 Answer #4: 4.6×10^{-6}

II. Calculate the pH of each of the following solutions containing a strong acid in water.

 Question #5: 4.0 M HNO₃

 Answer #5: -0.60

 Question #6: 6.2×10^{-12} M HNO₃

 Answer #6: 7.0

III. Calculate the pH of solution that contains 1.0 M HF and 1.0 M HO₆H₅. Also calculate the concentration of $OC₆H₅^-$ in this solution at equilibrium.

 Question #7: pH of the solution =

 Answer #7: 1.57

 Question #8: $[OC₆H₅^-]$ =
Answer #8: 5.9×10^{-9}

IV. Calculate the percent dissociation of 0.0050 M acetic acid. Only include the number and not the percent sign in the answer.

Question #9: percent dissociation =

Answer #9: 5.8

V. In a 0.100 M solution of HF, the percent dissociation is 8.1 %.

Question #10: Calculate K_a.

Answer #10: 7.0×10^{-4}

VI. Calculate the percent ionization in the following solution. Only include the number and not the percent sign in the answer.

Question #11 0.10 M hydroxylamine (HONH$_2$, $K_b = 1.1 \times 10^{-8}$)

Answer #11: 0.033

VII. Using the K_a values in Table 14.4 for a 0.10 M solution of H$_2$CO$_3$.

Question #12: Calculate the pH of the solution.

Answer #12: 3.68

Question #13: What is the [CO$_3^{2-}$]?

Answer #13: 5.6×10^{-11}

VIII. Question #14: Calculate the pH of a 0.10 M CH$_3$NH$_3$Cl.

Answer lucky #14: 5.82